Factory OEM Supply API 5CT Seamless Steel Tube Pipe Well Casing Tubing Coupling Joint Oil Well Pipe Tubing Casing
the importance of Factory OEM supply in API 5ct seamless steel Tube Pipe The Oil and gas industry is a vital sector that plays a crucial role in the global economy. To ensure the smooth operation of oil wells, it is essential to have high–quality equipment and materials. One such component that is of utmost…
the importance of Factory OEM supply in API 5ct seamless steel Tube Pipe
The Oil and gas industry is a vital sector that plays a crucial role in the global economy. To ensure the smooth operation of oil wells, it is essential to have high–quality equipment and materials. One such component that is of utmost importance is the API 5CT seamless steel tube pipe. This pipe is used for well Casing, tubing, and coupling joints in oil wells. The quality and reliability of these pipes are critical for the efficient extraction of oil and gas. when it comes to API 5CT seamless steel tube pipes, factory OEM supply is of paramount importance. OEM stands for original Equipment manufacturer, which means that the pipes are manufactured by the same Company that produces the original equipment. This ensures that the pipes are made to the exact specifications and standards set by the industry. One of the key advantages of factory OEM supply is the assurance of quality. When you purchase API 5CT seamless steel tube pipes from an OEM Supplier, you can be confident that the pipes are made using high-quality materials and adhere to strict manufacturing standards. This is crucial in the oil and gas industry, where any compromise in quality can lead to catastrophic consequences. Another benefit of factory OEM supply is the availability of a wide range of options. OEM Suppliers offer a variety of sizes, grades, and specifications to meet the specific requirements of different oil wells. This allows operators to choose the most suitable pipes for their wells, ensuring optimal performance and longevity.
Labels a | Calculated Mass c | ||||||||||
Nominal linear Mass T& C b,c | wall thick– ness | em, Mass Gain or Loss Due to End Finishing d | |||||||||
Outside diameter | Inside Diameter | Drift Diameter | Plain- end | kg | |||||||
round thread | Buttress Thread | ||||||||||
wpe | |||||||||||
D | kg/m | t | D | mm | kg/m | short | Long | RC | SCC | ||
mm | mm | mm | |||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 3/8 | 48 | 339.72 | 71.43 | 8.38 | 322.96 | 318.99 | 68.48 | 15.04 | — | — 17.91 | — |
13 3/8 | 54.5 | 339.72 | 81.1 | 9.65 | 320.42 | 316.45 | 78.55 | 13.88 | — | 16.44 | — |
13 3/8 | 61 | 339.72 | 90.78 | 10.92 | 317.88 | 313.91 | 88.55 | 12.74 | — | 14.97 | — |
13 3/8 | 68 | 339.72 | 101.19 | 12.19 | 315.34 | 311.37 | 98.46 | 11.61 | — | 14.97 | — |
13 3/8 | 68 | 339.72 | 101.19 | 12.19 | 315.34 | 311.37 | 98.46 | 11.67 f | — | 14.33 | — |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 311.15 e | 105.21 | 10.98 | — | 13.98 | — |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 311.15 e 309.63 309.63 | 105.21 | 10.91 f | — | 14.33 | — |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 105.21 | 10.98 | — | 13.98 | — | |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 105.21 | 10.91 e | — | — | ||
16 | 65 | 406.4 | 96.73 | 9.53 | 387.4 | 382.57 | 96.73 | 18.59 | — | — 20.13 | — |
16 | 75 | 406.4 | 111.61 | 11.13 | 384.1 | 379.37 | 108.49 | 16.66 | — | 18.11 | — |
16 | 84 | 406.4 | 125.01 | 12.57 | 381.3 | 376.48 | 122.09 | 14.92 | — | — | — |
16 | 109 | 406.4 | 162.21 | 16.66 | 373.1 | 368.3 | 160.13 | — | — | — | |
18 5/8 | 87.5 | 473.08 | 130.21 | 11.05 | 450.98 | 446.22 | 125.91 | 33.6 | — | 39.25 | — |
20 | 94 | 508 | 139.89 | 11.13 | 485.7 | 480.97 | 136.38 | 20.5 | 27.11 | 24.78 | — |
20 | 94 | 508 | 139.89 | 11.13 | 485.7 | 480.97 | 136.38 | 20.61 | 27.26 g 24.27 17.84 | 24.78 | — |
20 | 106.5 | 508 | 158.49 | 12.7 | 482.6 | 477.82 | 155.13 | 18.22 | 22 | — | |
20 | 133 | 508 | 197.93 | 16.13 | 475.7 | 470.97 | 195.66 | 13.03 | 16.02 | — | |
NOTE See also Figures D.1, D.2, and D.3. | |||||||||||
a Labels are for information and assistance in ordering. | |||||||||||
b Nominal linear masses, threaded and coupled (Column 4) are shown for information only. | |||||||||||
c The densities of martensitic chromium steels (L80 types 9Cr and 13Cr) are less than those of carbon steels; The masses shown are therefore not accurate for martensitic chromium steels; A mass correction factor of 0.989 shall be used. | |||||||||||
d Mass gain or loss due to end finishing; See 8.5. | |||||||||||
e Drift diameter for most common bit size; This drift diameter shall be specified in the purchase agreement and marked on the pipe; See 8.10 for drift requirements. | |||||||||||
f based on 758 mPa minimum yield strength or greater. | |||||||||||
g Based on 379 mPa minimum yield strength. |