1026 Honed Tubing for Hydraulic Cylinde
benefits of Using 1026 Honed tubing for Hydraulic Cylinders When it comes to hydraulic cylinders, the choice of tubing material is crucial in ensuring optimal performance and longevity. One material that has gained popularity in the industry is 1026 honed tubing. This type of tubing is known for its superior strength, durability, and precision, making…
benefits of Using 1026 Honed tubing for Hydraulic Cylinders
When it comes to hydraulic cylinders, the choice of tubing material is crucial in ensuring optimal performance and longevity. One material that has gained popularity in the industry is 1026 honed tubing. This type of tubing is known for its superior strength, durability, and precision, making it an ideal choice for hydraulic cylinder applications. Oil Tube One of the key benefits of using 1026 honed tubing for hydraulic cylinders is its high tensile strength. This means that the tubing can withstand high pressure and heavy loads without deforming or failing. This is essential in hydraulic systems where the tubing is constantly under pressure and subjected to intense forces. The high tensile strength of 1026 honed tubing ensures that it can handle the demands of hydraulic applications without compromising performance or safety.
Tensile and Hardness Requirements | |||||||||
grade | Yield Strength MPa | Tensile Strength | Hardness a,c | Specified Wall thickness | Allowable Hardness Variation b | ||||
Type | Total Elongation Under Load | min MPa | max | ||||||
min | max | HRC | HBW | mm | HRC | ||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
H40 | — | 0.5 | 276 | 552 | 414 | — | — | — | — |
J55 | — | 0.5 | 379 | 552 | 517 | — | — | — | — |
K55 | — | 0.5 | 379 | 552 | 655 | — | — | — | — |
N80 | 1 | 0.5 | 552 | 758 | 689 | — | — | — | — |
N80 | Q | 0.5 | 552 | 758 | 689 | — | — | — | — |
R95 | — | 0.5 | 655 | 758 | 724 | — | — | — | — |
L80 L80 | 1 | 0.5 | 552 | 655 | 655 | 23 | 241 | — | — |
L80 | 9Cr 13Cr | 0.5 | 552 | 655 | 655 | 23 | 241 | — | — |
0.5 | 552 | 655 | 655 | 23 | 241 | — | — | ||
C90 | 1 | 0.5 | 621 | 724 | 689 | 25.4 | 255 | £12.70 | 3 |
12.71 to 19.04 | 4 | ||||||||
19.05 to 25.39 | 5 | ||||||||
³ 25.40 | 6 | ||||||||
T95 | 1 | 0.5 | 655 | 758 | 724 | 25.4 | 255 | £12.70 | 3 |
12.71 to 19.04 | 4 | ||||||||
19.05 to 25.39 | 5 | ||||||||
³ 25.40 | 6 | ||||||||
C110 | — | 0.7 | 758 | 828 | 793 | 30 | 286 | £12.70 | 3 |
12.71 to 19.04 | 4 | ||||||||
19.05 to 25.39 | 5 | ||||||||
³ 25.40 | 6 | ||||||||
P110 | — | 0.6 | 758 | 965 | 862 | — | — | — | — |
Q125 | 1 | 0.65 | 862 | 1034 | 931 | b | — | £12.70 | 3 |
12.71 to 19.04 19.05 | 4 | ||||||||
5 | |||||||||
a In case of dispute, laboratory Rockwell C hardness testing shall be used as the referee method. | |||||||||
b No hardness limits are specified, but the maximum variation is restricted as a manufacturing control in accordance with 7.8 and 7.9. | |||||||||
c For through-wall hardness tests of grades L80 (all types), C90, T95 and C110, the requirements stated in HRC scale are for maximum mean hardness number. |