Wholesale Galvanized Square Tubing for Carports Galvanised Rectangular Tube
benefits of Using wholesale galvanized square tubing for Carports Wholesale galvanized square tubing is a popular choice for constructing carports due to its durability, strength, and cost–effectiveness. Galvanized square tubing is made from steel that has been coated with a layer of zinc to protect it from corrosion and rust. This coating makes the tubing…
benefits of Using wholesale galvanized square tubing for Carports
Wholesale galvanized square tubing is a popular choice for constructing carports due to its durability, strength, and cost–effectiveness. Galvanized square tubing is made from steel that has been coated with a layer of zinc to protect it from corrosion and rust. This coating makes the tubing ideal for outdoor use, as it can withstand harsh weather conditions without deteriorating. One of the main benefits of using wholesale galvanized square tubing for carports is its strength. The zinc coating adds an extra layer of protection to the steel, making it more resistant to bending, warping, and other forms of damage. This means that carports made from galvanized square tubing are able to support heavy loads, such as snow or wind, without buckling or collapsing. In addition to its strength, wholesale galvanized square tubing is also highly durable. The zinc coating helps to prevent rust and corrosion, which can extend the lifespan of the tubing and reduce the need for Maintenance. This makes galvanized square tubing a cost-effective option for carport construction, as it requires less upkeep and replacement compared to other materials. Another benefit of using wholesale galvanized square tubing for carports is its versatility. Galvanized square tubing comes in a variety of sizes and thicknesses, allowing for customization to fit the specific needs of the carport design. Whether you need a small, simple structure or a large, complex one, galvanized square tubing can be easily adapted to meet your requirements. Furthermore, wholesale galvanized square tubing is easy to work with, making it a popular choice for DIY enthusiasts and professional builders alike. The tubing can be cut, welded, and shaped to create a wide range of carport designs, from traditional gable roofs to modern cantilever structures. This flexibility allows for creativity and innovation in carport construction, ensuring that each project is unique and tailored to the individual’s preferences.Labels a | Calculated Mass c | ||||||||||
Nominal linear Mass T& C b,c | wall Thick- ness | em, Mass Gain or Loss Due to End Finishing d | |||||||||
Outside diameter | Inside Diameter | Drift Diameter | Plain- end | kg | |||||||
round thread | Buttress Thread | ||||||||||
wpe | |||||||||||
D | kg/m | t | D | mm | kg/m | short | long | RC | SCC | ||
mm | mm | mm | |||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 3/8 | 48 | 339.72 | 71.43 | 8.38 | 322.96 | 318.99 | 68.48 | 15.04 | — | — 17.91 | — |
13 3/8 | 54.5 | 339.72 | 81.1 | 9.65 | 320.42 | 316.45 | 78.55 | 13.88 | — | 16.44 | — |
13 3/8 | 61 | 339.72 | 90.78 | 10.92 | 317.88 | 313.91 | 88.55 | 12.74 | — | 14.97 | — |
13 3/8 | 68 | 339.72 | 101.19 | 12.19 | 315.34 | 311.37 | 98.46 | 11.61 | — | 14.97 | — |
13 3/8 | 68 | 339.72 | 101.19 | 12.19 | 315.34 | 311.37 | 98.46 | 11.67 f | — | 14.33 | — |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 311.15 e | 105.21 | 10.98 | — | 13.98 | — |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 311.15 e 309.63 309.63 | 105.21 | 10.91 f | — | 14.33 | — |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 105.21 | 10.98 | — | 13.98 | — | |
13 3/8 | 72 | 339.72 | 107.15 | 13.06 | 313.6 | 105.21 | 10.91 e | — | — | ||
16 | 65 | 406.4 | 96.73 | 9.53 | 387.4 | 382.57 | 96.73 | 18.59 | — | — 20.13 | — |
16 | 75 | 406.4 | 111.61 | 11.13 | 384.1 | 379.37 | 108.49 | 16.66 | — | 18.11 | — |
16 | 84 | 406.4 | 125.01 | 12.57 | 381.3 | 376.48 | 122.09 | 14.92 | — | — | — |
16 | 109 | 406.4 | 162.21 | 16.66 | 373.1 | 368.3 | 160.13 | — | — | — | |
18 5/8 | 87.5 | 473.08 | 130.21 | 11.05 | 450.98 | 446.22 | 125.91 | 33.6 | — | 39.25 | — |
20 | 94 | 508 | 139.89 | 11.13 | 485.7 | 480.97 | 136.38 | 20.5 | 27.11 | 24.78 | — |
20 | 94 | 508 | 139.89 | 11.13 | 485.7 | 480.97 | 136.38 | 20.61 | 27.26 g 24.27 17.84 | 24.78 | — |
20 | 106.5 | 508 | 158.49 | 12.7 | 482.6 | 477.82 | 155.13 | 18.22 | 22 | — | |
20 | 133 | 508 | 197.93 | 16.13 | 475.7 | 470.97 | 195.66 | 13.03 | 16.02 | — | |
NOTE See also Figures D.1, D.2, and D.3. | |||||||||||
a Labels are for information and assistance in ordering. | |||||||||||
b Nominal linear masses, threaded and coupled (Column 4) are shown for information only. | |||||||||||
c The densities of martensitic chromium steels (L80 types 9Cr and 13Cr) are less than those of carbon steels; The masses shown are therefore not accurate for martensitic chromium steels; A mass correction factor of 0.989 shall be used. | |||||||||||
d Mass gain or loss due to end finishing; See 8.5. | |||||||||||
e Drift diameter for most common bit size; This drift diameter shall be specified in the purchase agreement and marked on the Pipe; See 8.10 for drift requirements. | |||||||||||
f based on 758 mPa minimum yield strength or greater. | |||||||||||
g Based on 379 mPa minimum yield strength. |